1.

Find the least positive integer `n`such that `((2i)/(1+i))^n`is a positive integer.

Answer» Correct Answer - n =8
`((2i)/(1+i))+((2i(1-i))/((1+i)(1-i)))^(n)= ((2(i-i^(2)))/(2)))^(n)`
`= (i+1)^(n)`
`=(2i)^(n//2)`
Hence , n= 8 is the least positive interger for which the given complex number is a positive integer.


Discussion

No Comment Found

Related InterviewSolutions