1.

Find the missing frequency (p) for the following distribution whose mean is 7.68.x35791113f6815p84

Answer»
xffx
3618
5840
715105
9p9p
11888
13452
N = 41 + pΣfx = 303 + 9p

We know that, 

Mean = \(\frac{Σ fx}{ N }\)

= \(\frac{(303 + 9p)}{(41 + p) }\)

Given, 

Mean = 7.68 

⇒ 7.68 = \(\frac{(303 + 9p)}{(41 + p)}\) 

7.68(41 + p) = 303 + 9p 

7.68p + 314.88 = 303 + 9p 

1.32p = 11.88 

∴ p = \(\frac{11.88}{1.32}\) = 9



Discussion

No Comment Found

Related InterviewSolutions