InterviewSolution
Saved Bookmarks
| 1. |
Find the number of distinct solutions of secx +tanx = sqrt(3), where 0 le xle3pi. |
|
Answer» Solution :Here, `secx +tanx=sqrt(3) rArr 1+sinx = sqrt(3)cosx` or `sqrt(3)cosx-sinx=1` `sqrt(3)cosx-sinx=1` DIVIDING both sides by `sqrt(a^(2)+b^(2))`. i.e., `sqrt(4)=2`, we get `rArr sqrt(3)/2 cosx-1/xsinx=1/2` `rArr cospi/6cosx-sinpi/6 sinx=1/2 rArr cos(x+pi/6) = 1/2` As `0lexle3pi` `pi/6 le x +pi/6 le3pi+pi/6` `rArr x+pi/6=pi/3, (5pi)/3, (7pi)/(3) rArr x=pi/6, (3pi)/(2), (13pi)/(6)` But at `x=(3pi)/(2)`,`tanx` and `secx` is not defined `THEREFORE` Total NUMBER of solutions are 2.
|
|