InterviewSolution
Saved Bookmarks
| 1. |
Find the number of solution of the equation `cot^(2) (sin x+3)=1` in `[0, 3pi]`. |
|
Answer» Correct Answer - Six solutions We have `cot^(2) (sin x+3)=1="cot"^(2) pi/4` `rArr sin x+3=n pi pm pi/4` Now, `2 le sin x +3 le 4` `:. Sin x+3=pi-pi/4` or `sin x+3=pi+pi/4` `:. Sin x=(3pi)/4-3` ...(1) or `sin x=(5pi)/4-3` ...(2) For (1), we have two values of x in interval `(pi, 2pi)`. For (2), we have two values of x in each of the intervals `(0, pi), (2pi, 3pi)`. So, there are total six solutions. |
|