

InterviewSolution
1. |
Find the number of terms(i) How many terms of the A.P. : 9, 17, 25 ….. must be taken to give a sum of 636?(ii) How many terms the A.P. 63, 60, 57, …… must be taken to give a sum of 693? |
Answer» (i) Given A.P. : 9, 17, 25, … First term (a) = 9, common difference (d) = 17 – 9 = 8 Let no. of terms be n Sn = 636 ⇒ n/2[2a + (n – 1)d] = 636 ⇒ n/2[2 × 9+ (n – 1)8] = 636 ⇒ n/2[18 + 8n – 8] = 636 ⇒ n/2[8n + 10] = 636 ⇒ n(4n + 5) = 636 ⇒ 4n2 + 5n = 636 ⇒ 4n2 + 5n – 636 = 0 ⇒ 4n2 + 53 n – 48n – 636 = 0 ⇒ n(4n + 53) – 12(4n + 53) = 0 ⇒ (4n + 53)(n – 12) = 0 ⇒ n – 12 = 0 or 4n + 53 = 0 ⇒ n = 12 or – 53/4 ∵ n cannot be negative So, ignore n = – 53/4 ∴ n = 12 Hence, sum of 12 terms of given A.P. is 636. (ii) Given A.P. 63, 60, 57 ….. First term(a) = 63 Common difference (d) = 60 – 63 = -3 Let number of terms be n Sn = 693 We know that Sn = n/2[2a + (n – 1)d] ⇒ 693 = n/2[2 × 63 + (n – 1) (-3)] ⇒ 693 = n/2[126 – 3n + 3] ⇒ 1386 = n(129 – 3n) ⇒ 1386 = 129n – 3n2 ⇒ 3n2 – 129n + 1386 = 0 ⇒ n2 – 43n + 462 = 0 ⇒ n2 – 21n – 22n + 462 = 0 ⇒ = n(n – 21) – 22(n – 21) = 0 ⇒ (n – 21)(n – 22) = 0 ⇒ n – 21 = 0 or n – 22 = 0 n = 21 or n = 22 By taking 21 or 22 terms of given A.P. we will get sum 693. |
|