1.

Find the particular solution of the time dependet Schrodinger equation for a freely moving particle of mass m.

Answer»

Solution :THEL Schrodinger equation in one dimension for a free particle is
`i ħ(del Psi)/(delt)=-( ħ^(2))/(2m)(del^(2)Psi)/(delx^(2))`
we WRITE `Psi(x,t)= varphi(x)chi(t)`. Then
`((i)/ ħ(SQRT(2mEx-Et)) ħ)/(chi)(dchi)/(dt)=-( ħ^(2))/(2m)(1)/(varphi)(d^(2)varphi)/(dx^(2))=E`,say
Then `chi(t)~exp(-(IET)/(h))`
`varphi(x)~exp(isqrt(2mE)/( ħ)x)`
`E` must be real and positive if `varphi(x)` is to be bounded everywhere. Then
`Psi(x,t)=Const exp((i)/ (ħ)(sqrt(2mE)x-Et))`
This particular solution DESCRIBES plane waves.


Discussion

No Comment Found

Related InterviewSolutions