| 1. |
Find the perimeter of an equilateral triangale of side 24cm is |
|
Answer» Perimeter of an equilateral TRIANGLE: 3xsidePerimeter of an equilateral triangle: 3xside24 = 3 x sidePerimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \FRAC{\sqrt[]{3} a^{2} }{4}43a2Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \frac{\sqrt[]{3} a^{2} }{4}43a2= \sqrt{3}3 x 8^{2}82 / 4Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \frac{\sqrt[]{3} a^{2} }{4}43a2= \sqrt{3}3 x 8^{2}82 / 4= \sqrt{3}3 x 64/4Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \frac{\sqrt[]{3} a^{2} }{4}43a2= \sqrt{3}3 x 8^{2}82 / 4= \sqrt{3}3 x 64/4= \sqrt{3}3 16Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \frac{\sqrt[]{3} a^{2} }{4}43a2= \sqrt{3}3 x 8^{2}82 / 4= \sqrt{3}3 x 64/4= \sqrt{3}3 16or 27.7 (APPROXIMATELY)Perimeter of an equilateral triangle: 3xside24 = 3 x sideside = 24/3 = 8 cm²Area of an equilateral triangle: \frac{\sqrt[]{3} a^{2} }{4}43a2= \sqrt{3}3 x 8^{2}82 / 4= \sqrt{3}3 x 64/4= \sqrt{3}3 16or 27.7 (approximately)Hope that helped! :) |
|