InterviewSolution
Saved Bookmarks
| 1. |
Find the projection of vector (8i + j) in the direction of vector (i + 2j - 2k). |
|
Answer» Let, \(\vec{a} =( \vec{8i} + \vec{j})\) \(\vec{b} = (\vec{i} + \vec{2j} - \vec{2k})\) \(\vec{b}\) = \(\sqrt{1^2 + 2^2+ 2^2}\) = \(\sqrt{1+ 4+ 4}\) = \(\sqrt {9}\) = 3 \(\vec{b}\) = \(\frac{\vec{b}}{\vec{|b|}}\) = \(\frac{\vec{i}+\vec{2j}-\vec{2k}}{3}\) ∴ The projection of \((\vec{8i}+\vec{j})\) on \((\vec{i}+{2j}-\vec{2k})\) is \((\vec{8i}+\vec{j})\) \(\frac{\vec{i}+\vec{2j}-\vec{2k}}{3}\) = \(\frac{8+2+0}{3}\) = \(\frac{10}{3}\) |
|