InterviewSolution
Saved Bookmarks
| 1. |
Find the quotient of the identity function by the modulus function. |
|
Answer» Let `f:RtoR:f(x)=xandg:RtoR:g(x)=|x|` be the identity function and the modulus function respectively. Now, dom `((f)/(g))="dom "(f)nn"dom "(g)-{x:g(x)=0}` and `{x:g(x)=0}={x:""|x|=0}={0}`. `:."dom "((f)/(g))=[RnnR-{0}]-{0}=R-{0}` So, `(f)/(g):R-{0}toR:((f)/(g))(x)=(f(x))/(g(x))=(x)/(|x|)={{:(1",when "xgt0),(-1",when "xlt0):}` Hence, `((f)/(g))(x)={{:(1",when "xgt0),(-1",when "xlt0):}`. |
|