InterviewSolution
Saved Bookmarks
| 1. |
Find the range of 5 cosx – 12 sinx + 7. |
|
Answer» Given, 5 cosx – 12 sinx + 7 = 13 (\(\frac{5}{13}cosx - \frac{12}{13}sinx\)) + 7 Using formula, sin (A + B) = sin A cos B + cos A sin B Suppose, sin A = \(\frac{5}{13}\) and cos A = \(\frac{12}{13}\) = 13 (sin A cosx – cos A sinx) + 7 = 13 sin (A – x) + 7 We know the range of sin x is [– 1, 1] so, the range of 13 sin (A – x) + 7 is [– 1 × 13 + 7, 1 × 13 + 7] = [– 6, 20] |
|