InterviewSolution
Saved Bookmarks
| 1. |
Find the remainder when `1^2013+2^2013+3^2013+...+2012^2013` is divisible by 2013 |
|
Answer» `1^2013+2^2013+3^2013+...+2012^2013` `=(1^2013+2012^2013)+(2^2013+2011^2013)+...(1006^2013+1007^2013)` So, these terms are of the form `a^n+b^n` and they will be divided by `a+b` as `n = 2013` and it is odd. `:.` Remainder of the given expression when divided by `2013` is `0`. |
|