

InterviewSolution
Saved Bookmarks
1. |
Find the shortest distance between the lines gives by `vecr=(8+3lamda)hati-(9+16lamda)hatj+(10+7lamda)hatk` and `vecr=15hati+29hatj+5hatk+mu(3hati+8hatj-5hatk)`. |
Answer» We have `vecr=(8+3lamda)hati-(9+16lamda)hatj+(10+7lamda)hatk` `=8hati-9hatj+10hatk+3lamdahati-16lamdahatj+7lamdahatk` `=8hati-9hatj+10hatk+lamda(3hati-16hatj+7hatk)` `implies veca_(1)=8hati-9hatj+10hatk` and `vecb_(1)=3hati-16hatj+7hatk` Also `vecr=15hati+29hatj+5hatk+mu(3hati+8hatj-5hatk)` `implies veca_(2)=15hati+29hatj+5hatk` and `vecb_(2)=3hati+8hatj-5hatk` Now, shortest distance between two lines is given by `|((vecb_(1)xxvecb_(2)).(veca_(2)-veca_(1)))/(|vecb_(1)xxvecb_(2)|)|` `:. vecb_(1)xxvecb_(2)=|(hati, hatj, hatk),(3,-16,7),(3,8,-5)|` `=hati(80-56)-hatj(-15-21)+hatk(24+48)` `=24hati+36hatj+72hatk` Now `|vecb_(1)xxvecb_(2)|=sqrt((24)^(2)+(36)^(2)+(72)^(2))` `=12sqrt(2^(2)+3^(2)+6^(2))=84` ltbgt and `(veca_(2)-veca_(1))=(15-8)hati+(29-9)hatj+(5-10)hatk` `=7hati+38hatj-5hatk` `:.` Shortest distance `=|((24hati+36hatj+72hatk).(7hati+38hatj-5hatk))/84|` `=|(168+1368-360)/84|=|1176/84|=14` units |
|