

InterviewSolution
Saved Bookmarks
1. |
Find the shortest distancebetween the z-axis and the line, `x+y+2z-3=0,2x+3y+4z-4=0.` |
Answer» let `p_1` and `p_2` be the points on the given planes having coordinates (1,1,2) & (2,3,4) respectively R = `|(i,j,k),(1,1,2),(2,3,4)|` `=i(-2)-j(0) + k(1) = -2i+k` `(-2,0,1)` if z=0 `x+y-3 = 0 & 2x+3y-4 = 0` we get `2(3-y) + 3y-4 = 0` then, `y=-2 & x = 5` so,intersection point `(5,-2,0)` eqn of line is `(x-5)/-2 = (y+2)/0 = z/1` let direction ratios of this line is `(a_1,b_1,c_1)` eqn of z axis is `x/0 = y/0 = z/0` let direction ratios of this line is `(a_2,b_2,c_2)` S.D = `||(x_2-x_1,y_2-y_1,z_2-z_1),(a_1,b_1,c_1),(a_2,b_2,c_2)||/||(i,j,k),(a_1,b_1,c_1),(a_2,b_2,c_2)||` `= ||(-5,2,0),(-2,0,1),(0,0,1)||/(||(i,j,k),(-2,0,1),(0,0,1)||)` `|(-4)|/(|j(2)|)= 2` |
|