1.

Find the simplest form of (i) \(\frac{69}{92}\)(ii) \(\frac{473}{645}\)(iii) \(\frac{1095}{1168}\)(iv) \(\frac{368}{496}\)

Answer»

(i) Prime factorization of 69 and 92 is: 

69 = 3 × 23 

92 = 22 × 23

Therefore, \(\frac{69}{92}\) = \(\frac{3\times23}{2^2\times23}\) = \(\frac{3}{2^2}\) = \(\frac{3}{4}\)

Thus, simplest form of \(\frac{69}{92}\) is \(\frac{3}{4}\)

(ii) Prime factorization of 473 and 645 is: 

473 = 11 × 43 

645 = 3 × 5 × 43

Therefore, \(\frac{473}{645}\) = \(\frac{11\times43}{3\times5\times43}\) = \(\frac{11}{15}\)

Thus, simplest form of \(\frac{473}{645}\) is \(\frac{11}{15}\)

(iii) Prime factorization of 1095 and 1168 is: 

1095 = 3 × 5 × 73 

1168 = 24 × 73

Therefore, \(\frac{1095}{1168}\) = \(\frac{3\times5\times73}{2^4\times73}\) = \(\frac{15}{16}\)

Thus, simplest form of \(\frac{1095}{1168}\) is \(\frac{15}{16}\)

(iv) Prime factorization of 368 and 496 is:

368 = 24 × 23 

496 = 24 × 31 

Therefore, \(\frac{368}{496}\) = \(\frac{2^4\times23}{2^4\times31}\) = \(\frac{23}{31}\)

Thus, simplest form of \(\frac{368}{496}\) is \(\frac{23}{31}\)



Discussion

No Comment Found