1.

Find the slope of a common tangent to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1`and aconcentric circle of radius `rdot`

Answer» Correct Answer - `sqrt((r^(2)-b^(2))/(a^(2)-r^(2)))`
The equation of any tangent to the given ellipse is `y=mx+sqrt(a^(2)m^(2)+b^(2))`
If it touches `x^(2)+y^(2)=r^(2)`, then
`sqrt(a^(2)m^(2)+b^(2))=r sqrt(1+m^(2))`
or `m^(2)(a^(2)-r^(2))=r^(2)-b^(2)`
or `m=sqrt((r^(2)-b^(2))/(a^(2)-r^(2)))`


Discussion

No Comment Found

Related InterviewSolutions