InterviewSolution
Saved Bookmarks
| 1. |
Find the solution of the differential equation `cos ydy+cosxsinydx=0`given that `y=pi//2`, when `x=pi//2.` |
|
Answer» `cosy*dy+cosxsinydx=0` `implies (cosy)/(siny)dy+cosxdx=0` Inetegrate both sides `int(cosy)/(siny)dy+intcosxdx=0` Let `siny=t` `impliesint(1)/(t)dt+intcosxdx=0` `impliescosydy=dt` `implieslogt+sinx=c` `implies log(siny)+sinx=c`…..`(1)` Given that `x=pi//2` if `y=pi//2` `:. log sin"(pi)/(2)+sin"(pi)/(2)=c` `impliesc=1` `:.` From eq. `(1)` `log(siny)+sinx=1`. |
|