1.

Find the sum `cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqrt(170)++cos e c^(-1)sqrt((n^2+1)(n^2+2n+2))`

Answer» Let `S = cosec^-1sqrt10+cosec^-1sqrt50+cosec^-1sqrt170+...+cosec^-1sqrt((n^2+1)(n^2+2n+2))`
Here, `T_n = cosec^-1sqrt((n^2+1)(n^2+2n+2))`
Let `cosec^-1sqrt((n^2+1)(n^2+2n+2)) = theta`
`=>cosec theta = sqrt((n^2+1)(n^2+2n+2))`
`=>cosec^2theta = (n^2+1)(n^2+2n+2)`
`=>cosec^2theta = (n^2+1)(n^2+1+2n+1)`
`=>1+cot^2theta = (n^2+1)(n^2+1)+2n(n^2+1)+n^2+1`
`=>1+cot^2theta = (n^2+1+n)^2+1`
`=>cot^2theta = (n^2+1+n)^2`
`=>tan theta = 1/(1+n^2+n) = ((n+1) - n)/(1+n(n+1))`
`=>theta = tan^-1(((n+1) - n)/(1+n(n+1)))`
`=>theta = tan^-1(n+1) - tan^-1(n)`
`:. T_n = tan^-1(n+1) - tan^-1(n)`
Now, `S = tan^-1(2) - tan^-1(1) + tan^-1(3) - tan^-1(2)+tan^-1(4) - tan^-1(3)+...+tan^-1(n+1) - tan^-1(n)`
`=>S = tan^-1(n+1) - tan^-1(1)`
`=>S = tan^-1(n+1) - pi/4.`


Discussion

No Comment Found