

InterviewSolution
Saved Bookmarks
1. |
Find the sum `.^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n)`. |
Answer» Method I : `.^(n)C_(0)+2xx.^(n)C_(1)+3xx.^(n)C_(2)+"...."+(n+1)xx .^(n)C_(n)` `= underset(r=0)overset(n)sum(r+1).^(n)C_(r)` `=underset(r=0)overset(n)sum[r.^(n)C_(r)+.^(n)C_(r)]` `=n underset(r=0)overset(n)sum.^(n-1)C_(r-1)+underset(r=0)overset(n)sum.^(n)C_(r)` `= n(.^(n-1)C_(0) + .^(n-1)C_(1) + .^(n-1)C_(2)+"..."+.^(n-1)C_(n-1)) + (.^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+"....."+.^(n)C_(n))` `= n2^(n-1) + 2^(n)` `= (n+2)2^(n-1)` Method II : We have `(1+x)^(n) = .^(n)C_(0)+.^(n)C_(1)x+.^(n)C_(2)x^(2)+"....."+.^(n)C_(n)x^(n)` `:. x(1+x)^(n) = .^(n)C_(0)x+.^(n)C_(1)x^(2)+.^(n)C_(2)x^(3) + "....." + .^(n)C_(n)x^(n+1)` Differentiating w.r.t. x, we get `n(n1+x)^(n-1)x+(1+x)^(n)=.^(n)C_(0)+2xx.^(n)C_(1)x+3xx.^(n)C_(2)x^(2)+"..."+(n+1)xx.^(n)C_(n)x^(n)` Putting `x = 1`, we get `n2^(n-1)+2^(n)=.^(n)C_(0) +2xx.^(n)C_(1)+3xx.^(n)C_(2)+"....."+(n+1)xx.^(n)C_(n)` |
|