1.

Find the sum of n terms of the series 1 + (1 + x) + (1 + x + x2) + .....?

Answer»

1 + (1 + x) + (1 + x + x2) + ....... n terms 

⇒ Required sum = \(\frac{1}{(1-x)}\) [(1 – x) + (1 – x) (1 + x) + (1 – x) (1 + x + x2) + ..... n terms]

\(\frac{1}{(1-x)}\) [(1 – x) + (1 – x2) + (1 – x3) + ..... n terms]

\(\frac{1}{(1-x)}\) [(1 + 1 + 1 + .... n terms) – (x + x2 + x3 + ..... n terms]

\(\frac{1}{(1-x)}\)\(\bigg[n-\frac{x(1-x^n)}{(1-x)}\bigg]\)       \(\bigg(\because{S_n}=\frac{a(1-r^n)}{(1-r)},\text{Here}\,a= x, r=x\bigg)\)

\(\frac{n(1-x)-x(1-x^n)}{(1-x)^2}\).



Discussion

No Comment Found