Saved Bookmarks
| 1. |
Find the sum of series 1/2 + 1/6 + 1/12 + ------1/n(n+1) terms |
|
Answer» n/(n + 1) Step-by-step EXPLANATION: GENERAL term = 1/n(n + 1) = ((n + 1) - n)/n(n + 1) = 1/n - 1/(n + 1) Therefore, let the sum of the SERIES be R. ⇒ 1/2 + 1/6 + 1/12 + ... 1/m(m + 1) = R ⇒ (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... [1/(n - 1) - 1/n] + [1/n - 1/(n + 1)] = R ⇒ 1 - 1/(n + 1) = R ⇒ (n + 1 - 1)/(n + 1) = R ⇒ n/(n + 1) = R HENCE, the sum of 1st n terms of this series is n/(n + 1). *better to be seen through browser/desktop-mode |
|