 
                 
                InterviewSolution
| 1. | Find the sum of the following series:(i) 2 + 5 + 8 + … + 182(ii) 101 + 99 + 97 + … + 47(iii) (a – b)2 + (a2 + b2) + (a + b)2 + s…. + [(a + b)2 + 6ab] | 
| Answer» (i) 2 + 5 + 8 + … + 182 First term, a = a1 = 2 Common difference, d = a2 – a1 = 5 – 2 = 3 an term of given AP is 182 an = a + (n - 1)d 182 = 2 + (n - 1)3 182 = 2 + 3n – 3 182 = 3n – 1 3n = 182 + 1 n = 183/3 = 61 Now, By using the formula, S = n/2 (a + l) = 61/2 (2 + 182) = 61/2 (184) = 61 (92) = 5612 ∴ The sum of the series is 5612 (ii) 101 + 99 + 97 + … + 47 First term, a = a1 = 101 Common difference, d = a2 – a1 = 99 – 101 = -2 an term of given AP is 47 an = a + (n - 1)d 47 = 101 + (n - 1)(-2) 47 = 101 – 2n + 2 2n = 103 – 47 2n = 56 n = 56/2 = 28 Then, S = n/2 (a + l) = 28/2 (101 + 47) = 28/2 (148) = 14 (148) = 2072 ∴ The sum of the series is 2072 (iii) (a – b)2 + (a2 + b2) + (a + b)2 + s…. + [(a + b)2 + 6ab] First term, a = a1 = (a - b)2 Common difference, d = a2 – a1 = (a2 + b2) – (a – b)2 = 2ab an term of given AP is [(a + b)2 + 6ab] an = a + (n - 1) d [(a + b)2 + 6ab] = (a - b)2 + (n - 1)2ab a2 + b2 + 2ab + 6ab = a2 + b2 – 2ab + 2abn – 2ab a2 + b2 + 8ab – a2 – b2 + 2ab + 2ab = 2abn 12ab = 2abn n = 12ab / 2ab = 6 Then, S = n/2 (a + l) = 6/2 ((a - b)2 + [(a + b)2 + 6ab]) = 3 (a2 + b2 – 2ab + a2 + b2 + 2ab + 6ab) = 3 (2a2 + 2b2 + 6ab) = 3 × 2 (a2 + b2 + 3ab) = 6 (a2 + b2 + 3ab) ∴ The sum of the series is 6 (a2 + b2 + 3ab) | |