1.

Find the sum of the following series up to n terms : `(1^3)/1+(1^3+2^2)/(1+3)+(1^3+2^3+3^3)/(1+3+5)+dotdotdot`

Answer» `r^(th)` term in the given expression can be given as,
`T_r = (1^3+2^3+3^3+...)/(1+3+5+...)`
`=>T_r = (((r(r+1)))/2)^2/(r^2)`
`=>T_r = (r^2(r+1)^2)/(4r^2)`
`=>T_r = 1/4(r+1)^2`
`=>T_r = 1/4(r^2+1+2r)`
`:.` Sum of given series ` = sum T_n = 1/4 (sum n^2+ sum 1 + sum 2n)`
`= 1/4[(n(n+1)(n+2))/6+n+2*(n(n+1))/2]`
`=n/4[((n+1)(n+2))/6+(n+2)]`


Discussion

No Comment Found

Related InterviewSolutions