1.

Find the sum of the GP : 1 – a + a2 – a3 + …to n terms ( a ≠ 1)

Answer»

Sum of a G.P. series is represented by the formula, Sn = a\(\frac{r^n -1}{r-1}\), when r≠1. 

‘Sn’ represents the sum of the G.P. series up to nth terms, 

‘a’ represents the first term, 

‘r’ represents the common ratio and 

‘n’ represents the number of terms. 

Here, 

a = 1 

r = (ratio between the n term and n-1 term) -a \(\div\) 1 = -a

n terms

\(\therefore\) Sn = 1 \(\times\) \(\frac{(-a)^n -1}{-a-1}\)

[Multiplying both numerator and denominator by -1]

\(\Rightarrow\)  Sn = \(\frac{1-(-a)^n}{1+a}\)



Discussion

No Comment Found