 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Find the sum of the series `1+ (1+2) + (1+2+3) + (1+2 + 3 +4)+ … + (1+2+3+… + 20)`.A. 1470B. 1540C. 1610D. 1370 | 
| Answer» Correct Answer - B `1+(1+2)+ (1+2+3)+(1+2+3+4) +...20` terms. `= 1+3+6+10 + 15 + 21 + 28 + 36 +m 45+55 + 66 + 78 + 91 + 105+ 120 + 136 + 153 + 171 + 190 + 210` `= 1540` Alternate method : `1+(1+2) + (1+2 + 3) + ...n`th term of the series is `1+2 +3 + 4 + ...n = (n(n+1))/(2)` Sum of `n` terms of the series `= sum t_n` `= sum (n(n+1))/(2) rArr = (1)/(2) sum (n^(2) + n)` ` = (1)/(2) ( sum n^(2) + sumn)` `= (1)/(2)[(n(n+1) (2n+1))/(6) + (n(n+1))/(2)]` `= (n(n+1))/(4) ((2n+1)/(3) +1)` `rArr (n(n+1)(2n+4))/(12) = (n(n+1)(n+2))/(6)` If `n= 20` `sum t_(20) = (20(21)(22))/(6)` `rArr (10xx 21xx 22)/(3) = 1540`. | |