InterviewSolution
Saved Bookmarks
| 1. |
Find the sum to n terms of the series whose nth term is `n^2+2^n`. |
|
Answer» We have, `T_(k)=(k^(2)+2^(k))`. `therefore S_(n)=sum_(k=1)^(n)T_(k)` `=sum_(k=1)^(n)(k^(2)+2^(k))=sum_(k=1)^(n)k^(2)+sum_(k=1)^(n)2^(k)` `=(1)/(6)n(n+1)(2n+1)+(2+2^(2)+2^(3)+ ...+2^(n))[because sum_(k=1)^(n)k^(2)=(1)/(6)n(n+1)(2n+1)]` `=(1)/(6)n(n+1)(2n+1)+(2(2^(n)-1))/((2-1)) " "[because 2+2^(2)+ ... +2^(n)" is a GP"]` `=(1)/(6)n(n+1)(2n+1)+2(2^(n)-1).` Hence, the required sum is `(1)/(6)n(n+1)(2n+1)+2(2^(n)-1).` |
|