1.

If `S_1,S_2,S_3` are the sums of first n natural numbers, their squares and their cubes respectively then `S_3(1+8S_1)=`

Answer» We have
`S_(1)=(1+2+3+...+n)rArr S_(1)=(1)/(2)n(n+1),`
`S_(2)=(1^(2)+2^(2)+3^(2)+ ...+n^(2))rArr S_(2)=(1)/(6)n(n+1)(2n+1),`
`and S_(3)=(1^(2)+2^(3)+3^(3)+ ...+n^(3)) rArr S_(3)=(1)/(4)n^(2)(n+1)^(2)`.
`therefore 9S_(2)^(2)=9xx(1)/(36)*n^(2)(n+1)^(2)(2n+1)^(2)=(1)/(4)n^(2)(n+1)^(2)(2n+1)^(2).`
And , `S_(3)(1+8S_(1))=(1)/(4)n^(2)(n+1)^(2)*{1+8*(1)/(2)n(n+1)}`
` =(1)/(4)n^(2)(n+1)^(2)(4n^(2)+4n+1)=(1)/(4)n^(2)(n+1)^(2)(2n+1)^(2).`
Hence, `9S_(2)^(2)=S_(3)(1+8S_(1)).`


Discussion

No Comment Found