InterviewSolution
| 1. |
Find the value of \(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) .1. \( -\frac{\pi }{4}\)2. \( - \frac{\pi }{3}\)3. \(\frac{\pi }{4}\)4. \( - \frac{\pi}{2}\) |
|
Answer» Correct Answer - Option 4 : \( - \frac{\pi}{2}\) Concept: If x = sin θ then \(θ = {\sin ^{ - 1}}x\) Similarly, if x = tan θ then \(θ = {\tan ^{ - 1}}x\) Calculation: The expression \({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) can be rewritten as: \({\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right] = {\tan ^{ - 1}}\left[ {2\cos \left( {\frac{{2\pi }}{3}} \right)} \right]\) \(= {\tan ^{ - 1}}\left[ {2\left( { - \frac{1}{2}} \right)} \right]\) \(= {\tan ^{ - 1}}\left( { - 1} \right)\) \(= - \frac{\pi}{4}\) \(2{\tan ^{ - 1}}\left[ {2\cos \left( {2{{\sin }^{ - 1}}\frac{{\sqrt 3 }}{2}} \right)} \right]\) \(= - 2 \times \frac{\pi}{4} = - \frac{\pi}{2}\) |
|