1.

Find the value of`2cos^(-1)3/(sqrt(13))+cot^(-1)(16)/(63)+1/2cos^(-1)7/(25)`

Answer» `2cos^-1 (3/sqrt13) + cot^-1 (16/63) +1/2cos^-1 (7/25)`
Now, `cos^-1(3/sqrt13) = tan^-1(2/3)`
`:. 2cos^-1(3/sqrt13) = 2 tan^-1(2/3) = tan^-1((2*(2/3))/(1-(2/3)^2)) = tan^-1((4/3)/(5/9)) = tan^-1(12/5)`
`cot^-1(16/63) = tan^-1(63/16)`
Let `1/2cos^-1(7/25) = tan^-1x`
`=> cos^-1(7/25) = 2tan^-1x`
`=> tan^-1(24/7) = tan^-1((2x)/(1-x^2))`
`=>(2x)/(1-x^2) = 24/7`
Solving it , we get , ` x =3/4`
`:. 1/2cos^-1(7/25) = tan^-1(3/4)`
Putting these values in the given equation,
`tan^-1(12/5)+tan^-1(63/16)+tan^-1(3/4)`
`=(tan^-1(12/5)+tan^-1(3/4))+tan^-1(63/16)`
As, `12/5 gt 0, 3/4 gt 0 and 12/5*3/4 gt 1`,
So, it becomes,
`=pi+ tan^-1((12/5+3/4)/(1-(12/5)(3/4)))+tan^-1(63/16)`
`=pi- tan^-1(63/16)+tan^-1(63/16)`
`=pi`
`:. 2cos^-1 (3/sqrt13) + cot^-1 (16/63) +1/2cos^-1 (7/25) = pi`


Discussion

No Comment Found