1.

Find the value of a, b and c from the following equations;\(\begin{bmatrix}{a-b} & {2a+c} \\{2a - b} & {3c+d} \\\end{bmatrix}\) = \(\begin{bmatrix}-1 & 5 \\0 & 13 \\\end{bmatrix}\)

Answer»

 \(\begin{bmatrix} {a-b} & {2a+c} \\ {2a - b} & {3c+d} \\ \end{bmatrix} \) = \(\begin{bmatrix} -1 & 5 \\ 0 & 13 \\ \end{bmatrix} \)

⇒ a – b = -1, 2a + c = 5, 2a – b = 0, 3c + d = 13

⇒ a – b = -1

2a – b = 0

– a = -1

⇒ a = 1

We have, a – b = -1 ⇒ 1 – b = -1 ⇒ b = 2

⇒ 2a + c = 5 ⇒ 2 + c = 5 ⇒ c = 3

⇒ 3c + d = 13 ⇒ 9 + d = 13 ⇒ d = 4.



Discussion

No Comment Found

Related InterviewSolutions