1.

Find the value of A, if √3 - 3√3tan2A = 3tan A - tan3A.1. 45° 2. 15° 3. 20° 4. 30°

Answer» Correct Answer - Option 3 : 20° 

Given:

√3 - 3√3tan2A = 3tan A - tan3A

Formula used:

tan 3A = (3tan A - tan3A)/(1 - 3tan2A)

Calculation:

√3 - 3√3tan2A = 3tan A - tan3A

⇒ √3(1 - 3tan2A) = 3tan A - tan3A

⇒ √3 = (3tan A - tan3A)/(1 - 3tan2A)

⇒ √3 = tan 3A 

⇒ tan 60° = tan 3A

⇒ 3A = 60° 

⇒ A = 60°/3 = 20° 

∴ The value of A is 20°. 



Discussion

No Comment Found

Related InterviewSolutions