Saved Bookmarks
| 1. |
Find the value of k if the Quarditic equatation(k+1)^2×x -2(K-1)x+1=0 has equal roots. |
|
Answer» Correct OPTION is A k=0 C k=3 The GIVEN equation is (k+1)x 2 −2(k−1)x+1=0 comparing it with ax 2 +bx+c=0 we get a=(k+1),b=−2(k−1) and c=1 ∴ Discriminant, D=b 2 −4ac=4(k−1) 2 −4(k+1)×1 =4(k 2 −2k+1)−4k−4 ⇒4k 2 −8k+4−4k−4=4k 2 −12k Since ROOTS are real and equal, so D=0⇒4k 2 −12k=0⇒4k(k−3)=0 ⇒ either k=0 or k−3=0⇒4k(k−3)=0 Hence, k=0,3. |
|