1.

Find the value of k so that the area of the triangle with vertices A(k+1, 1), B(4, -3) and C(7, -k) is 6 square units.

Answer» Correct Answer - k = 3
Let `A(x_(1) = k + 1, y_(1) =1), B(x_(2) = 4, y_(2) = -3) " and "C(x_(3) = 7, y_(3) = -k)` be the vertices of `Delta ABC`. Then,
`ar (Delta ABC) = (1)/(2) |x_(1) (y_(2) -y_(3)) + x_(2) (y_(3) -y_(1)) + x_(3)(y_(1) -y_(2))|`
` = (1)/(2)|(k+1)(-3+k) + 4(-k-1) + 7(1+3)|`
` = (1)/(2)|(k^(2) -6k + 21)| = (1)/(2)|(k^(2) -6k + 9) +12|`
` = (1)/(2) |(k-3)^(2) + 12| = (1)/(2)[(k-3)^(2) + 12].`
`therefore (1)/(2)[(k-3)^(2) +12] = 6 rArr (k-3)^(2) + 12 = 12 rArr (k-3)^(2) = 0`
Hence, k = 3.


Discussion

No Comment Found