1.

Find the value of \(\lim\limits_{x \to 0}\frac{e^x-1}{x}\)

Answer»

\(​​​​\lim\limits_{x \to 0}\frac{e^x-1}{x}\) 

\(=\lim\limits_{x \to 0}\frac{[1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+....]-1}{x}\) 

\(=\lim\limits_{x \to 0}\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}\) 

\(=\lim\limits_{x \to 0}[\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}]\) 

= 1.



Discussion

No Comment Found