InterviewSolution
Saved Bookmarks
| 1. |
Find the value of \(\lim\limits_{x \to 0}\frac{e^x-1}{x}\) |
|
Answer» \(\lim\limits_{x \to 0}\frac{e^x-1}{x}\) \(=\lim\limits_{x \to 0}\frac{[1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+....]-1}{x}\) \(=\lim\limits_{x \to 0}\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}\) \(=\lim\limits_{x \to 0}[\frac{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...}{x}]\) = 1. |
|