InterviewSolution
| 1. |
Find the value of \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} \)1. 2cosθ2. 2cos2θ3. cos4θ4. 2cos(θ/2) |
|
Answer» Correct Answer - Option 2 : 2cos2θ Given: \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} \) Concept used: \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} = \;2{\rm{cos}}\frac{{16\theta }}{{{2^{\rm{n}}}}}\) Where n → number of terms Calculation: Here 2 came 3 times ⇒ n = 3 \(\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\rm{cos}}16{\rm{\theta }}} \;} \;} = \;2{\rm{cos}}\frac{{16\theta }}{{{2^3}}}\) ⇒ 2cos2θ \(\therefore {\bf{The}}\;{\bf{value}}\;{\bf{of}}\;\sqrt {2\; + \;\sqrt {2\; + \;\sqrt {2\; + \;2{\bf{cos}}16{\bf{\theta }}} \;} \;} {\bf{is}}\;2{\bf{cos}}2{\bf{\theta }}.\) |
|