InterviewSolution
Saved Bookmarks
| 1. |
Find the value of the given expression \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)1. sinθ + cosθ 2. 03. 14. sinθ - cosθ |
|
Answer» Correct Answer - Option 3 : 1 Given: Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) Formula used: sin2θ = 2sinθ cosθ sin2θ + cos2θ = 1 (a + b)2 = a2 + b2 + 2ab Calculation: Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) ⇒ (cosθ + sinθ)/√(sin2θ + cos2θ + 2sinθ cosθ) ⇒ (cosθ + sinθ)/√(sinθ + cosθ)2 ⇒ (cosθ + sinθ)/(sinθ + cosθ) ⇒ 1 ∴ The value of the given expression is 1 |
|