1.

Find the value of the given expression \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)1. sinθ + cosθ 2. 03. 14. sinθ - cosθ

Answer» Correct Answer - Option 3 : 1

Given:

 Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\)

Formula used:

sin2θ = 2sinθ cosθ

sin2θ + cos2θ = 1

(a + b)2 = a2 + b2 + 2ab

Calculation:

Our given expression is \(\frac{{cos\theta \; + \;sin\theta }}{{\sqrt {1\; + \;sin2\theta } }}\) 

⇒ (cosθ + sinθ)/√(sin2θ + cos2θ + 2sinθ cosθ)

⇒ (cosθ + sinθ)/√(sinθ + cosθ)2

⇒ (cosθ + sinθ)/(sinθ + cosθ)

⇒ 1

∴ The value of the given expression is 1



Discussion

No Comment Found

Related InterviewSolutions