

InterviewSolution
1. |
Find the value of x from the following : \(\begin{bmatrix} 2x-y& 5 \\[0.3em] 3 &y\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6& 5\\[0.3em] 3 & -2 \\[0.3em] \end{bmatrix}\). |
Answer» We are given with matrix equation We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} 2x-y& 5 \\[0.3em] 3 &y\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6& 5\\[0.3em] 3 & -2 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, 2x – y = 6 …(i) 5 = 5 3 = 3 y = - 2 …(ii) To solve for x and y, We have equations (i) and (ii). From equation (ii), y = - 2 Substituting y = - 2 in equation (i), we get 2x – y = 6 ⇒ 2x – (- 2) = 6 ⇒ 2x + 2 = 6 ⇒ 2x = 6 – 2 ⇒ 2x = 4 ⇒ x = \(\frac{4}{2}\) ⇒ x = 2 Thus, We get x = 2 and y = - 2. |
|