

InterviewSolution
1. |
Find the value of x if \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\). |
Answer» We are given that, \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\) We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, 3x + y = 1 …(i) - y = 2 …(ii) 2y – x = - 5 …(iii) 3 = 3 To solve for x and y, We have equations (i), (ii) and (iii). From equation (ii), -y = 2 Multiplying both sides by -1, -1 × -y = - 1 × 2 ⇒ y = - 2 Substituting y = - 2 in either of the equations (i) or (iii), say (i) 3x + y = 1 ⇒ 3x + (-2) = 1 ⇒ 3x – 2 = 1 ⇒ 3x = 1 + 2 ⇒ 3x = 3 ⇒ x = \(\frac{3}{3}\) ⇒ x = 1 Thus, We get x = 1 and y = - 2. |
|