1.

Find the value of y if \(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\).

Answer»

We are given that,

\(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\)

We need to find the values of x and y. 

We know by the property of matrices,

\(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\)

This implies, 

a11 = b11

a12 = b12

a21 = b21 and 

a22 = b22 

So, if we have 

\(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\)

Corresponding elements of two matrices are equal. 

That is,

x – y = 2 …(i) 

2 = 2 

x = 3 …(ii) 

5 = 5

To solve for x and y, 

We have equations (i) and (ii).

From equation (ii), 

x = 3 

Substituting x = 3 in equation (i), we get 

3 – y = 2 

⇒ y = 3 – 2 

⇒ y = 1 

Thus, 

We get x = 3 and y = 1.



Discussion

No Comment Found

Related InterviewSolutions