1.

Find the value with the help of logarithem tables. 3614 x 46.282 102.32 x 16.82​

Answer»

ANSWER:

LET x=5872×0.058

Taking LOG both SIDES, we have

logx=log(5872×0.058)

logx=log5872+log0.058(∵logab=loga+logb)

logx=log(58.72×10

2

)+log(58×0

−3

)

logx=log58.72+2+log58−3(∵log10=1)

⇒1+logx=log58.72+log58

Using log table, we get

log58.72=1.77

log58=1.76

∴1+logx=1.77+1.76

⇒logx=3.53−1

⇒logx=2.53

⇒x=Antilog(2.53)=338.84

Therefore,

5872×0.058≈338.84



Discussion

No Comment Found

Related InterviewSolutions