1.

Find the values of a, b and c if matrices A and B are equal, whereA = \(\begin{bmatrix}a - 2&3&2c\\[0.3em]12c& b + 2 & bc\end{bmatrix}, B = \begin{bmatrix}b&c&6\\[0.3em]6b&a&3b\end{bmatrix}\)

Answer»

Given, A = B

A = \(\begin{bmatrix}a - 2&3&2c\\[0.3em]12c& b + 2 & bc\end{bmatrix}, B = \begin{bmatrix}b&c&6\\[0.3em]6b&a&3b\end{bmatrix}\)

On comparing

a – 2 = b

⇒ a – b = 2 …..(i)

3 = c

12c = 6b

⇒ b = (12 x 3)/6 = 6

⇒ b = 6

From b + 2 = a,

a – b = 2

∴ a = 2 + b = 2 + 6 = 8

So, a = 8, b = 6, c = 3.



Discussion

No Comment Found

Related InterviewSolutions