1.

Find the values of x and y if : \(\begin{bmatrix} x+10& y^2+2y \\[0.3em] 0 & -4 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 3x+4&3 \\[0.3em] 0 & y^2-5y \\[0.3em] \end{bmatrix} ​​\)

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix} x+10& y^2+2y \\[0.3em] 0 & -4 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 3x+4&3 \\[0.3em] 0 & y^2-5y \\[0.3em] \end{bmatrix} ​​\) 

We know that if two matrices are equal then the elements of each matrices are also equal.

∴ x + 10 = 3x + 4 

⇒ x – 3x = 4 – 10 

⇒ – 2x = – 6 ⇒ x = 3  …(1) 

And y2 + 2y = 3 

⇒ y2 + 2y – 3 = 0 

⇒ y2 + 3y – y – 3 = 0 

⇒ y(y + 3) – 1(y + 3) = 0 

⇒ (y + 3)(y – 1) = 0 

⇒ y = – 3 or 1  …(2) 

And y2 – 5y = – 4 

⇒ y2 – 5y + 4 = 0 

⇒ y2 – 4y – y + 4 = 0 

⇒ y(y – 4) – 1(y – 4) = 0 

⇒ (y – 4)(y – 1) = 0 

⇒ y = 4 or 1 …(3) 

∴ The common value is x = 3 and y = 1



Discussion

No Comment Found

Related InterviewSolutions