1.

Find the variance and standard deviation of the random variable X whose probability distribution is given below : `{:(x,0,1,2,3),(P(X=x),1/8,3/8,3/8,1/8):}`

Answer» ` E(X) = sum p_(i) x_(i) `
` = 1/8 xx 0 + 3/8 xx 1 + 3/8 xx 2 + 1/8 xx 3`
` = 3/8 + 6/8 + 3/8 = 12/8 = 3/2`
` E(X^(2)) = sum p_(i)x_(i)^(2)`
` - 1/8 xx 0^(2) + 3/8 xx 1^(2) + 3/8 xx 2^(2) + 1/8 xx 3^(2) `
` = 0 + 3/8 + 12/8 + 9/8 = 24/8 = 3`
Var (X) = `E (X^(2)) - [E(X)]^(2)`
` = 3 - (3/2)^(2)`
` = 3 - 9/4 = (12 - 9)/4 = 3/4 `
Standard deviation, `sigma = sqrt("Var(X)") = sqrt(3/4)`
`sigma = sqrt3/2`
` :. " " Var (X) = 3/4 , sigma = sqrt3/2`


Discussion

No Comment Found