1.

Find the variance of first n natural numbers.

Answer»

Here, the variable are1,2,3,…, n

∴ Mean, \(\bar{x}=\frac{\sum x_i}{n}\)

\(=\frac{1+2+3+...+n}{n}\)

\(=\frac{n(n+1)}{2n}\)

 \(=\frac{n+1}{2}\)

Variance = \(\sum x_i^2-(\bar{x})^2\)

\(\frac{1^2+2^2+3^2+...+n^2}{n}-(\frac{n+1}{2})^2\)

\(\frac{n(n+1)(2n+1)}{6n}-(\frac{n+1}{2})\)

\((n+1)\{\frac{4n+2-3n-3}{12}\}\) 

 = \(\frac{(n+1)(n-1)}{12}\)

\(\frac{n^2-1}{12}\)



Discussion

No Comment Found

Related InterviewSolutions