InterviewSolution
Saved Bookmarks
| 1. |
Find the volume of the parallelepiped whosecoterminous edges are represented bythe vectors:` vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k`` vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k`` vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k`` vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k` |
|
Answer» Volume of the parallelepiped can be given as triple product of three vectors. (i)`V = [veca vecb vecc]` `:. V = |[2,3,4],[1,2,-1],[3,-1,2]|` `=>V = 2(3)-3(5)+4(-7)` `=>V = -37` But, volume can not be negative. So, required volume is `37` cubic units. (iii) `V = [veca vecb vecc] = [11hati` `2hatj` `13hatk] = (11hati xx 2hatj)*13hatk` `=> V =(22hatk)*13hatk = 286` cubic units. Similarly, we can do part(ii) and part (iv). |
|