1.

Find two numbers such that the sum of twice the first and thrice the second is 92, and four times the first exceeds seven times the second by 2​

Answer» <html><body><a href="https://interviewquestions.tuteehub.com/tag/x-746616" style="font-weight:bold;" target="_blank" title="Click to know more about X">X</a>=25y=14Step-by-step explanation:Let x and y be the two numbers <a href="https://interviewquestions.tuteehub.com/tag/required-1185621" style="font-weight:bold;" target="_blank" title="Click to know more about REQUIRED">REQUIRED</a>. According to the question : ⇒2x+3y=92       ⇒4x−7y=<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>         Multiply the first equation by 2 , and subtract <a href="https://interviewquestions.tuteehub.com/tag/eqn-973463" style="font-weight:bold;" target="_blank" title="Click to know more about EQN">EQN</a> (1) from eqn (2)  4x+6y=184 −(4x−7y=2) , we get ⇒13y=182 ⇒y= 182 / 13 = <a href="https://interviewquestions.tuteehub.com/tag/14-272882" style="font-weight:bold;" target="_blank" title="Click to know more about 14">14</a> Put y=14 in (1) 2x+3y=92 ⇒2x+3×14=92 ⇒2x=92−42=50 ∴x= 50 / 2 = 25</body></html>


Discussion

No Comment Found