1.

Find value of sin 75° cos 15° - cos 75° sin 15°1. \(\frac {\sqrt 3 + 1}{2}\)2. \(\frac {\sqrt 3}{2}\)3. 14. 0

Answer» Correct Answer - Option 2 : \(\frac {\sqrt 3}{2}\)

Concept:

sin x cos y + cos x sin y = sin (x + y)

sin x cos y - cos x sin y = sin (x - y)

Calculation:

Here, we have to find the value of sin 75° cos 15° - cos 75° sin 15°

As we know that, sin x cos y - cos x sin y = sin (x - y)

∴ sin 75° cos 15° - cos 75° sin 15° = sin (75° - 15°)

= sin 60° 

\(\frac {\sqrt 3}{2}\)



Discussion

No Comment Found

Related InterviewSolutions