InterviewSolution
Saved Bookmarks
| 1. |
Find value of sin 75° cos 15° - cos 75° sin 15°1. \(\frac {\sqrt 3 + 1}{2}\)2. \(\frac {\sqrt 3}{2}\)3. 14. 0 |
|
Answer» Correct Answer - Option 2 : \(\frac {\sqrt 3}{2}\) Concept: sin x cos y + cos x sin y = sin (x + y) sin x cos y - cos x sin y = sin (x - y) Here, we have to find the value of sin 75° cos 15° - cos 75° sin 15° As we know that, sin x cos y - cos x sin y = sin (x - y) ∴ sin 75° cos 15° - cos 75° sin 15° = sin (75° - 15°) = sin 60° = \(\frac {\sqrt 3}{2}\) |
|