

InterviewSolution
Saved Bookmarks
1. |
Find values of a and b if A = B, whereA = \(\begin{bmatrix} a + 4& 3b \\[0.3em] 8&-6 \end{bmatrix}\) and B = \(\begin{bmatrix} 2a + 2 & b^2 + 2 \\[0.3em] 8 & b^2 - 5b \end{bmatrix}\) |
Answer» Given, matrix A = matrix B Then their corresponding elements are equal. So, we have a11 = b11; a + 4 = 2a + 2 ⇒ a = 2 a12 = b12; 3b = b2 + 2 ⇒ b2 – 3b + 2 = 0 ⇒ b = 1, 2 a22 = b22; -6 = b2 – 5b ⇒ b2 – 5b + 6 = 0 ⇒ b = 2, 3 Hence, a = 2 and b = 2 (common value) |
|