InterviewSolution
Saved Bookmarks
| 1. |
Find X if; \(\rm \cos\left(\cot^{-1}{1\over5}\right) = \sin\left(\tan^{-1}X\right)\)1. \(\rm {5\over 4}\)2. 53. \(\rm {4\over 5}\)4. \(\rm 1\over 5\) |
|
Answer» Correct Answer - Option 4 : \(\rm 1\over 5\) Concept: Inverse trigonometric identities
Trigonometric Identities
Calculation: \(\rm \sin\left(\tan^{-1}X\right) = \cos\left(\cot^{-1}{1\over5}\right)\) ⇒ \(\rm \sin\left(\tan^{-1}X\right) = \sin\left[90-\left(\cot^{-1}{1\over5}\right)\right]\) ⇒ \(\rm \tan^{-1}X = 90-\cot^{-1}{1\over5}\) ⇒ \(\rm \tan^{-1}X = 90-\left(90-\tan^{-1}{1\over5}\right)\) ⇒ \(\rm \tan^{-1}X = \tan^{-1}{1\over5}\) Taking tan both sides ⇒ \(\rm \tan (\tan^{-1}X) = \tan(\tan^{-1}{1\over5})\) ⇒ X = \(\boldsymbol{\rm 1\over5}\) |
|