

InterviewSolution
1. |
Find x, y, a and b if \(\begin{bmatrix} 2x -3y & a - b & 3 \\[0.3em] 1 & x + 4y & 3a + 4b \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1& -2 &3 \\[0.3em] 1 & 6 & 29 \\[0.3em] \end{bmatrix}\) |
Answer» Given \(\begin{bmatrix} 2x -3y & a - b & 3 \\[0.3em] 1 & x + 4y & 3a + 4b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& -2 &3 \\[0.3em] 1 & 6 & 29 \\[0.3em] \end{bmatrix}\) As we know that if two matrices are equal then the elements of each matrices are also equal. Given as two matrices are equal. So by equating them 2a + b = 4 …… (1) And a – 2b = – 3 …… (2) And 5c – d = 11 …… (3) 4c + 3d = 24 …… (4) On multiplying equation (1) by 2 and adding to equation (2) 4a + 2b + a – 2b = 8 – 3 ⇒ 5a = 5 ⇒ a = 1 Substitute this value of a in equation (1) 2 × 1 + b = 4 ⇒ 2 + b = 4 ⇒ b = 4 – 2 ⇒ b = 2 On multiplying equation (3) by 3 and adding to equation (4) 15c – 3d + 4c + 3d = 33 + 24 ⇒ 19c = 57 ⇒ c = 3 Substitute this value of c in equation (4) 4 × 3 + 3d = 24 ⇒ 12 + 3d = 24 ⇒ 3d = 24 – 12 ⇒ 3d = 12 ⇒ d = 4 So a = 1, b = 2, c = 3 and d = 4 |
|