

InterviewSolution
1. |
Find x, y, a and b if \(\begin{bmatrix}3x + 4y & 2 & x - 2y \\[0.3em]a + b & 2a - b & -1 \\[0.3em]\end{bmatrix}\) = \(\begin{bmatrix}2& 2 &4 \\[0.3em]5 & -5 & -1 \\[0.3em]\end{bmatrix}\) |
Answer» Given as \( \begin{bmatrix} 3x + 4y & 2 & x - 2y \\[0.3em] a + b & 2a - b & -1 \\[0.3em] \end{bmatrix}\) = \( \begin{bmatrix} 2& 2 &4 \\[0.3em] 5 & -5 & -1 \\[0.3em] \end{bmatrix}\) Given as two matrices are equal. As we know that if two matrices are equal then the elements of each matrices are also equal. So, by equating them 3x + 4y = 2 …… (1) x – 2y = 4 …… (2) a + b = 5 …… (3) 2a – b = – 5 …… (4) On multiplying equation (2) by 2 and adding to equation (1), 3x + 4y + 2x – 4y = 2 + 8 ⇒ 5x = 10 ⇒ x = 2 Substitute this value of x in equation (1) 3 × 2 + 4y = 2 ⇒ 6 + 4y = 2 ⇒ 4y = 2 – 6 ⇒ 4y = – 4 ⇒ y = – 1 On adding equation (3) and (4) a + b + 2a – b = 5 + (– 5) ⇒ 3a = 5 – 5 = 0 ⇒ a = 0 Again substitute this value of a in equation (3), 0 + b = 5 ⇒ b = 5 So, a = 0, b = 5, x = 2 and y = – 1 |
|